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Abstract

A new type of quantum eraser using hyperentangled photon pairs is proposed. Whereas

a typical quantum eraser makes use of photons that are entangled in a single quantum

state, usually in polarization, our new quantum eraser exploits entanglements in both

polarization and momentum states. In a typical quantum eraser one gains“which-

path” information of one photon by changing the polarization measurement of the

other. This results in “erasing” the interference pattern previously obtained through

indistinguishability of paths. In our new quantum eraser we gain information about

the momentum state of one photon by changing the polarization of the other photon

in one of its momentum states. The knowledge of the momentum state then “erases”

the interference pattern previously obtained in the coincident counts of the photon

pairs. This new quantum eraser may readily be implemented using photon pairs

produced by Type-I Parametric Down Conversion. To achieve extra entanglement in

momentum states, we simply subject them to pass through two distinguishable sets

of pinholes and then recombine them before they reach polarization detectors.
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Chapter 1

Introduction

Premise

A quantum eraser is a device that allows observation of how measurement of one

particle in a two-particle system can affect measurement of the other particle. By

changing what is known about one particle, denoted as the signal, the interference

pattern measured by changing the phase of the other particle, denoted as the idler,

can be “erased” or brought back. In this experiment, photons entangled in polar-

ization and momentum (hyperentangled photons) are used to affect this interference

pattern based upon what is known about the photons. By using hyperentanglement,

it is possible to erase the interference pattern obtained via polarization measurement

by gaining knowledge about the momentum from the signal photon’s polarization

measurement. This is significant in that rather than entanglement in one degree,

which is generally used in quantum erasers, this uses hyperentanglement, and is thus

a new type of quantum eraser.
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Entanglement

Entanglement is a phenomenon that occurs when two particles, such as photons,

interact in a way that their quantum states cannot be described independently of

each other. In experiments, this can be ensured by giving them the same initial

conditions. The result of entanglement is that any measurement on one particle will

have an immediate effect on the other such that the quantum state of both particles

can be determined via the measurement of only one; i.e. measuring one particle

collapses the wave state of both the measured and unmeasured particles. Quantum

entanglement leads to the possibility of destroying the interference pattern that might

be obtained from a normal double slit or quantum eraser experiment by providing

information on one particle based on information gained from another.

As an example, if two photons are entangled in terms of their polarization, knowing

the polarization of one photon allows us to know the polarization of the other. As a

result, the wave function of the unmeasured photon collapses. It now has a different

expectation value for its polarization measurement without having been tampered

with itself.

Parametric Down-Conversion

In spontaneous parametric down-conversion (SPDC) a nonlinear crystal splits a single

photon into two photons of approximately equal energy, the sum of which is equal to

the energy of the original photon. The daughter photons also have the same phase

and closely correlated polarizations. There are two types of SPDC: Type I produces

daughter photons with identical linear polarizations (described by the wave function

|ψ〉 = 1√
2
{|H,H〉+ |V, V 〉}), and Type II produces daughter photons with orthogonal

linear polarizations (shown by the wave function |ψ〉 = 1√
2
{|H,V 〉 + |V,H〉}). The

original photon is called the “pump” photon and the resulting pair is called the
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“signal” and “idler” photons. Because the down-conversion process is a result of

random vacuum fluctuations within the crystal, the production of signal and idler

photon pairs is completely random. In our experiment, SPDC is achieved by sending

a pump laser beam into a beta-barium borate (BBO) crystal, which results in Type

I SPDC with the signal and idler photons moving in an approximately 3 degree cone

extending from the crystal. Each pair of signal and idler photons is diametrically

opposed on a cross sectional area of the cone due to momentum conservation.

Polarization and Quantum Erasers

The effects of photon entanglement have given rise to a unique type of experiment

known as the quantum eraser. Quantum erasers demonstrate the role measurement

plays in the physical reality observed.

In one form of traditional quantum eraser experiment, a pair of entangled photons

are produced through SPDC and sent in differing directions. The signal photon (γs)

is sent straight to a detector (Ds), while the idler photon (γi) is directed toward a

Mach-Zehnder interferometer using linear polarizing beam splitters (PBS) to split

and recombine the photon pathway.

Polarizing beam splitters consist of two pieces of birefringent material fused to-

gether to create a cube. Between the fused faces is a partially reflective coating that

allows photons that are horizontally polarized to be transmitted and photons that

are vertically polarized to be reflected. Thus, if γi is horizontally polarized it will

travel one arm of the interferometer, whereas it will travel the other arm of the in-

terferometer if it is vertically polarized. The horizontal polarization path and the

vertical polarization path are recombined using another PBS and sent to a detector

(Di). This recombination makes it impossible to determine which path γi traveled.

Adjusting the mirrors along each arm of the interferometer varies the path-length
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for each arm, creating phase differences in the wave function of the interferometer.

Due to the uncertainty of which path γi travels through the Mach-Zehnder interfer-

ometer, it can be considered to have travelled through both paths simultaneously,

allowing for self-interference. This interference pattern is apparent in the coincidence

counts between Ds and Di . For some phase differences, a photon arriving at Ds

will be accompanied by its entangled partner arriving at Di , while for other phase

differences a photon arriving at Ds will have no coincident measurement of a photon

at Di. The expectation value for γi is 〈γi〉 = cosφ, where φ is the phase difference of

the Mach-Zehnder interferometer (see section 3.2 for a comparable calculation of the

expectation value).

Consider now an experimental design altered so that Ds was not just measuring

the arrival of a photon but also the linear (horizontal/vertical) polarization of γs.

Because the photon pair was created through SPDC, measuring the polarization of

γs would give the observer information about the polarization of γi , even if the

polarization of γi were not directly measured. For instance, in Type I SPDC, a

measurement on γs showing it were horizontally polarized would tell us that γi was

also horizontally polarized. Being able to determine the polarization of γi would

additionally indicate which path the photon took through the interferometer. Gaining

this “which-path” information through the polarization measurement of γs results in

a loss of the interference pattern observed at Di. Varying the phase in the Mach-

Zehnder interferometer no longer has an effect on the coincidence measurements,

and we find 〈γi〉 = 0. Even though no polarization measurement is made on γi,

the knowledge of γs’s polarization results in γi adopting particle-like behavior and

traveling only one arm of the interferometer at a time.

Now, instead of measuring the linear polarization of γs we measure the circular

polarization of γs. The ket vector representation for a right-handed polarized photon

is |R〉 = 1√
2
{|H〉+ i |V 〉}, while the representation for a left-handed polarized photon
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Figure 1.1: Above is shown a diagram of a quantum eraser utlizing a Mach-Zehnder
interferometer. In this scheme, the photon source is an argon laser. The beam travels
through a half and quarter wave plate and a lens before reaching the BBO crystal. At
the crystal, SPDC occurs to create the signal and idler entangled photons. The signal
photon heads directly to a detector through two quarter wave plates and a PBS, so
the polarizaton can be affected as needed for this photon. The idler is directed to the
Mach-Zehnder interferometer, where the idler photon’s self-interference is measured
by detectors D1 and D2. However, once the quarter wave plates pertaining to the
signal photon’s path are adjusted so that its polarization corresponds with that of
the idler, the idler photon’s interference pattern disappears.
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is |L〉 = 1√
2
{|H〉 − i |V 〉}. Solving for |H〉 and |V 〉 in terms of |R〉 and |L〉 yields

|H〉 =
1√
2
{|R〉+ |L〉} (1.1)

|V 〉 =
−i√

2
{|R〉 − |L〉}. (1.2)

Substituting these vectors, Type I SPDC the wave function of the entangled photon

pair is given by

|ψ〉 =
1√
2
{|RL〉+ |LR〉}. (1.3)

As shown by equation (1.3), measuring the circular polarization of γs will still give

the polarization of γi (e.g. γs is measured to be right-handed polarized, indicating

that γi is left-handed polarized). However, knowing the circular polarization of γi does

not give any indication for which path γi took through the interferometer because the

circular polarizations are a mixture of both horizontal and vertical polarization. This

erases the “which-path” information and reintroduces the interference pattern at Di.



Chapter 2

Quantum Eraser with

Hyperentanglement

Hyperentanglement

As previously explained in section 1.1, photons (and other particles) are considered to

be entangled when the wave functions of each photon cannot be factored or simplified.

Their wave functions are connected. It is most common to see entanglement based

on polarization, as seen in the entangled photon pairs produced by SPDC (Type I or

Type II).

However, photons need not have only one degree of entanglement. In many exper-

imental setups using entangled photon pairs produced through SPDC, detectors are

placed to collect a photon pair that travels along one specific path. Consider instead

an experimental design that selected photon pairs from two different paths and then

recombined them in such a way that the detectors cannot determine which path the

photons travelled.

Such an experimental design would require the wave equations to incorporate not

only entanglement in polarization, but also entanglement in momentum. Entangle-

7
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ment in two or more degrees is known as hyperentanglement. Hyperentanglement

allows for more robust tests of the properties of entangled photons and interesting

new experimental designs.

Experimental Design

In our quantum eraser we employ a paired BBO crystal to induce Type I SPDC of

a 405 nm pump photon into 810 nm signal and idler photons. As previously stated,

these photons travel along a path 3 degrees on either side of the normal from the

surface of the crystal in which they were produced. This means that the photon pair

could travel anywhere in a circular cone emanating from the BBO.

In order to achieve hyperentanglement, a screen with four pinholes is placed in the

path of the cone, selecting two specific paths for the photon pairs to travel (denoted

here as path k and path l). Paths k and l are then reflected back along converging

trajectories by an array of four mirrors mounted on translational stages. While on

these converging trajectories, the idler photon’s paths pass through two half-wave

plates (HWPk and HWPl).

The converging paths are directed to a biconcave lens such that they emerge from

the lens on parallel trajectories. These trajectories are close enough to one another

that the two paths are indistinguishable to a detector, producing entanglement in

momentum. After exiting the lenses, the pump and idler pass through a linear PBS

that directs the photons to detectors.

The lenses used in this experiment are biconcave lenses with an effective focal

length of -0.625 cm. The mirror array is located 109.22 cm (43 in) down the table

from the face of the BBO crystal. The mirrors are angled such that the photons will

travel back along a path of identical distance as that from the BBO to the array.

That is, the surface of each mirror is angled such that each photon has a 3◦ angle of
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incidence and is reflected back along a plane that is orthogonal to the surface of the

mirror.

This reflection results in path k and path l on the signal and idler sides of the pump

beam converging at a point on the same horizontal and vertical plane as the BBO

crystal, but 10.16 cm (4 in) on either side of the BBO crystal. Because the biconcave

lenses have a focal length of -0.625 cm, placing the lenses 0.625 cm downtable from

this new convergence point results in the photon paths emerging from the lenses on

trajectories parallel to the surface of the table.

Figure 2.1: Here, a generalized experimental blueprint for a quantum eraser using
hyperentanglement is given. The form taken by the beam combiners, denoted in the
diagram as BC1 and BC2, is most simply considered as a lens, although other methods
of beam recombination are possible. The k path described in the text corresponds to
k1 and k2 in the diagram and the l path corresponds to k

′
1 and k

′
2.

Experimental Procedure

According to quantum theory, knowledge of the momentum of the photon pair gained

by measuring the polarization of the signal photon should cause the interference pat-

tern to disappear, despite the lack of explicit measurement of their starting momen-
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tum. This experiment will attempt to verify this prediction by using polarization

measurement with coincidence counting of signal and idler photons reaching their

detectors within a defined time window.

To begin, both HWPk and HWPl will be set to θ = 0. This setting leaves the

polarization of the photon unchanged, as shown in the calculations section. With

θk = θl = 0, we predict an interference pattern will be registered between the signal

and idler detectors by slightly altering the path lengths. The mirrors from which the

photons are reflected can be adjusted by translational mounts, and this will give us

the phase changes we need to measure an interference pattern.

After varying the phase 0 ≤ φ ≤ 2π and logging the interference pattern, the

next step will be to gain “which-path” information. This will be achieved by rotating

HWPk to θk = π
4
. As shown in the following section, θk = π

4
alters the polarization

of the photon by π
2
, changing |H〉 to |V 〉, and vice versa. This results in polarization

measurements that would indicate which momentum the photon pair had. If the

signal and idler photon have opposite polarization (|HV 〉 or |V H〉), then we know

that the photon pair traveled path k
(
θk = π

4

)
. If instead they are measured to have

the same polarization (|HH〉 or |V V 〉) we know the pair travelled path l (θl = 0).

This “which-path” information will cause the interference pattern to disappear. Thus,

we predict we will find results that do not vary based on the phase φ of the mirror

array.

Finally, we need to erase the “which-path” information obtained in the second

phase of the experiment. In this experimental design, that will be obtained by chang-

ing HWPl to θk = π
4
. As shown in the following sections, we no longer gain reliable

“which-path” information from the polarization. This means that we will again see an

interference pattern when changing φ in the mirror array when we observe orthogonal

polarization from the PBS.

The following figures 2.2, 2.3, and 2.4 consist of various vantage points of an optics
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table setup of the new quantum eraser experiment using hyperentanglement. These

photos were taken in the quantum information lab at Greenville University.
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Figure 2.2: A view of an example experimental setup from behind the laser source is
shown. The phase of the signal and idler photons can be adjusted via fine changes
to the position of the mirrors. The half wave plates, shown between the mirror array
and screen, are placed in k1 and k

′
1 paths to adjust the phases of the signal and idler

photons.
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Figure 2.3: A view of an example experimental setup from behind the laser source
is shown. The BBO crystal lies between the two lense-PBS-detector mounts. The
photons that undergo SPDC are directed through pinholes in the white screen to the
mirror array on the far right. The remaining photons from the beam are sent to a
beam dump directly to the left of the screen in the image.



14

Figure 2.4: A close up view of the experimental setup’s lenses, polarizing beam split-
ters, and detectors is shown. The lenses collimate the beams, sending them along
parallel trajectories into the polarizing beam splitters. Photons from these beams are
then detected, based on their polarization, by detectors 1, 2, 3, and 4.



Chapter 3

Calculations

Hyperentanglement

First, we must obtain the wave function for the hyperentangled photons. The wave

function in terms of polarization is:

|ψp〉 =
1√
2

(|h1h2〉+ |v1v2〉) (3.1)

In terms of momentum, the wave equation is:

|ψm〉 =
1√
2

(|k1k2〉+ |l1l2〉) (3.2)

Thus, the total wave equation for the hyperentangeled photon pair is:

|ψtotal〉 = |ψp〉 ⊗ |ψm〉

=
1

2
{(|h1h2〉+ |v1v2〉)⊗ (|k1k2〉+ |l1l2〉)} (3.3)

After the photon pair reflects off the mirror array, phase shifts are introduced to

15
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the wave equation.

|ψt〉 = |ψp〉 ⊗ |ψm〉

=
1

2

(
ei(φ1+φ2) |h1h2〉+ ei(φ3+φ4) |v1v2〉)⊗ (|k1k2〉+ |l1l2〉

)
=

1

2
(ei(φ1+φ2) |k1h1, k2h2〉+ e(φ1+φ2) |k1v1, k2v2〉+ ei(φ3+φ4) |l1h1, l2h2〉

+ei(φ3+φ4) |l1v1, l2v2〉)

=
1

2
ei(φ1+φ2)[|k1h1, k2h2〉+ |k1v1, k2v2〉

+ei(φ3+φ4−φ1−φ2) (|l1h1, l2h2〉+ |l1v1, l2v2〉)]

=
1

2
ei(φ1+φ2)

[
|k1h1, k2h2〉+ |k1v1, k2v2〉+ eiφ (|l1h1, l2h2〉+ |l1v1, l2v2〉)

]
,(3.4)

Where φ = φ3 +φ4−φ1−φ2. The coefficient ei(φ1+φ2) can be considered as an overall

phase change, resulting in Eqaution (3.4) becoming

|ψφ〉 =
1

2
{|k1h1, k2h2〉+ |k1v1, k2v2〉+ eiφ (|l1h1, l2h2〉+ |l1v1, l2v2〉)}. (3.5)

Beam Recombination

In order to preserve the momentum entanglement, it is necessary to make the two

paths indistinguishable to the detector array. This is achieved by recombining the

beams.

To determine how the recombination works, we first consider a simpler model:

one beam splitting evenly and recombining. Let |λ〉 represent the original and final

wave function, and let |k〉 and |l〉 represent the wave functions of the split beams.

Thus we have

|λ〉 =
1√
2

(|k〉+ |l〉). (3.6)

Because |k〉 and |l〉 recombine as |λ〉, this implies that each of the split wave functions
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is some portion of the original wave function. And, since the original momentum is

evenly split between |k〉 and |l〉, we see that they are each multiplied by the same

coefficient. That is, |k〉 = |l〉 = c |λ〉 for some constant c. Thus,

|λ〉 =
1√
2

(|k〉+ |l〉)

|λ〉 =
1√
2

(c |λ〉+ c |λ〉)

|λ〉 =
2√
2
c |λ〉

=⇒ c =
1√
2

(3.7)

=⇒ |k〉 = |l〉 =
1√
2
|λ〉 . (3.8)

We now wish to test this coefficient in our momentum equation (ignoring polar-

ization for the moment). As shown in Equation (3.2), we have

|ψm〉 =
1√
2

(|k1k2〉+ |l1l2〉) .

In our experiment, |k1〉 and |l1〉 will recombine to form a new beam |λ1〉. Similarly,

|k2〉 and |l2〉 form |λ2〉. Thus we have

|ψm〉 =
1√
2

(|k1k2〉+ |l1l2〉)

|ψm〉 =
1√
2

(c |λ1λ2〉+ c |λ1λ2〉)

Using c = 1√
2

from the first model, we get

|ψm〉 =
1√
2

(
1√
2
|λ1λ2〉+

1√
2
|λ1λ2〉

)
|ψm〉 =

1√
2

(
√

2 |λ1λ2〉)

=⇒ |ψm〉 = |λ1λ2〉 .
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This confirms that the coefficient c = 1√
2

found in the simple model fits our experi-

mental design.

Now we can consider our experiment including polarization. The wave equation

in Equation (3.5) after beam combination is

|ψφ〉 =
1

2
√

2
{|h1h2〉 ⊗ |λ1λ2〉+ eiφ |h1h2〉 ⊗ |λ1λ2〉+ |v1v2〉 ⊗ |λ1λ2〉+ eiφ |v1v2〉 ⊗ |λ1λ2〉}

=
1

2
√

2
{
(
1 + eiφ

)
|h1h2〉+

(
1 + eiφ

)
|v1v2〉}

=
1

2
√

2

(
1 + eiφ

)
{|h1h2〉+ |v1v2〉} = |ψ′φ〉 . (3.9)

Expectation Value: Stage 1

The general operator for a two-channel detector is given by

T̂ =

cos 2θ sin 2θ

sin 2θ − cos 2θ

 (3.10)

Setting θ = 0, we obtain the two-channel operator

T̂ =

1 0

0 −1

 (3.11)

The expectation value with the two-channel operators 〈T̂1 ⊗ T̂2〉 is thus:
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〈T̂1 ⊗ T̂2〉 = 〈ψ′φ| T̂1 ⊗ T̂2 |ψ′φ〉

=

[
1

2
√

2

(
1 + e−iφ

)
{〈h1h2|+ 〈v1v2|}

]
T̂1 ⊗ T̂2

[
1

2
√

2

(
1 + eiφ

)
{|h1h2〉+ |v1v2〉}

]
=

1

8

(
1 + e−iφ

) (
1 + eiφ

)
{〈h1h2|+ 〈v1v2|}T̂1 ⊗ T̂2{|h1h2〉+ |v1v2〉}

=
1

8

(
2 + e−iφ + eiφ

)
{〈h1h2|+ 〈v1v2|}{|h1h2〉+ |v1v2〉}

=
1

8

(
2 + e−iφ + eiφ

)
(2)

=
1

4

[
2 + 2

(
eiφ + e−iφ

2

)]
=

1

2
(1 + cosφ)

= cos2
(
φ

2

)
(3.12)

= [0, 1]

This gives us an expectation value that ranges from 0 to 1 dependent on φ, indicating

an interference pattern in the experimental results.

Half-Wave Plate

In the second stage of our experiment, we add a half-wave plate in the path of one of

the photons. The matrix operator for the half-wave plate is

Ĵλ
2

=

cos 2θ sin 2θ

sin 2θ − cos 2θ

 .

With θ = π
4

the matrix becomes

Ĵλ
2

=

0 1

1 0

 = Ẑ. (3.13)
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The effect of the half-wave plate on horizontal and vertical polarization is

Ẑ |h〉 =

0 1

1 0


1

0

 =

0

1

 = |v〉

Ẑ |v〉 =

0 1

1 0


0

1

 =

1

0

 = |h〉 .

If we place the half-wave plate on the k2 path after the mirror array, the equation

|ψφ〉 becomes:

Ẑk |ψφ〉 =
1

2
{|k1h1, k2v2〉+ |k1v1, k2h2〉+ eiφ(|l1h1, l2h2〉+ |l1v1, l2v2〉)}. (3.14)

We name Equation (3.14) as |ψλ
2
〉. Following the same beam combination as in the

derivation of Equation (3.8) we find:

|ψ′λ
2

〉 =
1

2
√

2
{|h1v2〉+ |v1h2〉+ eiφ(|h1h2〉+ |v1v2〉)}. (3.15)

Expectation Value: Stage 2

We now wish to find the expectation value of the two-channel detector array 〈T̂1 ⊗ T̂2〉.
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〈T̂1 ⊗ T̂2〉 = 〈ψ′λ
2

| T̂1 ⊗ T̂2 |ψ′λ
2

〉

=
1

8
{〈h1v2|+ 〈v1h2|+ e−iφ(〈h1h2|+ 〈v1v2|)}T̂1 ⊗ T̂2{|h1v2〉+ |v1h2〉

+eiφ(|h1h2〉+ |v1v2〉)}

=
1

8
{〈h1v2|+ 〈v1h2|+ e−iφ(〈h1h2|+ 〈v1v2|)}{− |h1v2〉 − |v1h2〉

+eiφ(|h1h2〉+ |v1v2〉)}

=
1

8
(−1− 1 + 1 + 1)

= 0

In this stage of the experiment, the expectation value is independent of the phase

change due to the mirror array, eliminating the interference pattern. This is consistent

with other quantum eraser experiments after “which-path” information is gained.

Expectation Value: Stage 3

Finally, we wish to reintroduce the interference pattern seen in the first stage of the

experiment. To do this we adjust HWPk to θk = π
4
. This results in the wave equation

of the final stage:

|ψf〉 =
1

2
{|k1h1, k2v2〉+ |k1v1, k2h2〉+ eiφ(|l1h1, l2v2〉+ |l1v1, l2h2〉)}. (3.16)

After beam recombination we arrive at

|ψf〉 =
1

2
√

2
{|h1v2〉+ |v1h2〉+ eiφ(|h1v2〉+ |v1h2〉)}

=
1

2
√

2
{
(
1 + eiφ

)
|h1v2〉+

(
1 + eiφ

)
|v1h2〉}

=
1

2
√

2

(
1 + eiφ

)
{|h1v2〉+ |v1h2〉} = |ψ′f〉 . (3.17)
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As in the previous stages, we wish to compute 〈T̂1 ⊗ T̂2〉.

〈T̂1 ⊗ T̂2〉 = 〈ψ′f | T̂1 ⊗ T̂2 |ψ′f〉

=
1

8

(
1 + e−iφ

)
{〈h1v2|+ 〈v1h2|}T̂1 ⊗ T̂2

(
1 + eiφ

)
{|h1v2〉+ |v1h2〉}

=
1

8

(
1 + e−iφ

) (
1 + eiφ

)
{〈h1v2|+ 〈v1h2|}T̂1 ⊗ T̂2{|h1v2〉+ |v1h2〉}

=
1

8

(
2 + e−iφ + eiφ

)
{〈h1v2|+ 〈v1h2|}{− |h1v2〉 − |v1h2〉}

=
1

8

(
2 + e−iφ + eiφ

)
(−2)

= −1

4

[
2 + 2

(
eiφ + e−iφ

2

)]
= −1

2
(1 + cosφ)

= − cos2
(
φ

2

)
= [−1, 0]

This confirms that an interference pattern will be reintroduced as in the first

stage of the experiment, but rather than the “fringes” seen in Stage 1, here we have

“antifringes”.



Chapter 4

Conclusions

As described in section 1.3, a quantum eraser typically uses a measurement of one of

two entangled photons to determine the quantum state of the other. For example, if

Type I SPDC was used to create two entangeled photons, and one was measured to

have vertical polarization, then the other must also have vertical polarizaiton. How-

ever, with this experimental design, it is possible to determine not only the polariza-

tion of the unmeasured photon based on measurement of its entangled twin, but also

to determine “which-path” information about the entangled momentum states. This

means that hyperentanglement can allow us to know the momentum and polarization

of a photon by measuring the polarization of its entangled twin.

By using measurement of polarization to determine the momentum of the photons

upon leaving the BBO crystal, we can show that in hyperentangled states, knowledge

of one quantum state of a photon can lead to knowledge of another; in this case,

knowledge of polarization leads to knowledge of momentum. It is thus significant

because it shows that the complete quantum state of one particle can be determined

via measurement of a single quantum state of another particle.
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